Comment éliminer l’effet Larsen ?

Merci !

Annales corrigées
Classe(s) : Tle S | Thème(s) : Sons et musiques
Type : Exercice | Année : 2014 | Académie : Amérique du Nord
 
Unit 1 - | Corpus Sujets - 1 Sujet
 
Comment éliminer l’effet Larsen ?
 
 

Son et musique

pchT_1405_02_00C

Spécialité

47

CORRIGE

 

Amérique du Nord • Juin 2014

Exercice 3 • 5 points

Phénomène fréquent dans les sonorisations de spectacles ou de conférences, l’effet Larsen se manifeste également avec les combinés téléphoniques munis d’un haut-parleur et les prothèses auditives ; cet effet produit un sifflement aigu très douloureux. Des guitaristes cherchent au contraire à exploiter le phénomène en s’approchant et en s’éloignant des enceintes pour produire des sons stridents qu’ils cherchent à moduler.

Document 1

Effet Larsen

L’effet Larsen doit son nom au physicien danois du xixe siècle Sören Larsen qui a été le premier à en expliquer l’origine.


 

Le son produit lors d’un concert est capté par le microphone, amplifié et transmis au haut-parleur. Le microphone, dans certaines conditions, capte aussi, en retour, une partie du son émis par le haut-parleur. Ce signal est alors à nouveau transmis au haut-parleur après une amplification qui peut être réglée. L’amplitude du son est alors augmentée et ainsi de suite. Ce retour partiel du son du haut-parleur vers le microphone produit un signal qui augmente progressivement en intensité et en fréquence.

On considère que l’effet Larsen apparaît dès que le niveau d’intensité sonore du son émis par le haut-parleur et capté par le microphone est supérieur à celui du son venant de la source sonore.

Document 2

Intensité sonore et niveau d’intensité sonore

L’intensité sonore I en un point M d’une onde acoustique émise par une source isotrope S supposée ponctuelle qui émet un son de puissance P, de manière identique dans toutes les directions, est donnée par :

d est la distance SM.

P s’exprime en watt (W).

On rappelle que le niveau d’intensité sonore L, exprimé en dB, est lié à l’intensité sonore I par la relation :

I0= 1,0 × 10–12 W·m–2.

Document 3

Évolution du niveau d’intensité sonore en fonction de la distance

 

Distance (m)

1

2

3

5

10

15

20

30

50

Niveau d’intensité sonore (dB)

92

86

82

78

72

68

66

62

58

90

84

80

76

70

66

64

60

56

85

79

75

71

65

61

59

55

51

80

74

70

66

60

56

54

50

46

75

69

65

61

55

51

49

45

41

70

64

60

56

50

46

44

40

36

 

D’après http://www.werma.com/fr/techtalk/lacoustique dans la signalisation.php

Document 4

Diagrammes directionnels de deux microphones

Un diagramme directionnel d’un microphone représente sa sensibilité selon la direction d’origine de l’onde sonore, à une fréquence donnée.

Microphone n° 1

 
Microphone n° 2

 

D’après le site wikipédia

> En s’appuyant sur les documents rassemblés, répondre aux questions suivantes.

1 Compléter la légende du document 1 repris dans l’annexe. (0,75 point)

2 Calculer la variation du niveau d’intensité sonore lorsque la distance à une source sonore isotrope double. Cette valeur est-elle compatible avec celle déduite du document 3 ? (1,25 point)


 

3 Une conférence se déroule dans une salle de dimensions 13 m × 5 m × 2,5 m.

Un orateur s’exprime avec une puissance sonore P égale à 12 µW devant un microphone placé à 1 m. Un haut-parleur (HP) est placé à une distance D du microphone. Un sonomètre détecte à 1 m du haut-parleur un niveau d’intensité sonore L= 85 dB. La contribution de la voix au niveau d’intensité sonore mesuré par le sonomètre est négligeable devant celle du haut-parleur.

L’éloignement du haut-parleur du microphone permettra-t-il à lui seul d’éviter l’effet Larsen ? La réponse sera justifiée par des calculs appropriés.

À l’aide des documents et de vos connaissances, proposer deux autres pistes pour limiter l’apparition de cet effet. (3 points)

La démarche suivie et la qualité de la rédaction sont évaluées. Tout élément de raisonnement, même partiel, sera pris en compte.

Annexe


 

Légende : nature du signal

① : onde sonore

② : signal électrique

③ : ......................

④ : ......................

⑤ : ......................

Notions et compétences en jeu

Résolution de problème • Niveau sonore • Pression • Intensité sonore

Conseils du correcteur

2 Déterminer l’intensité puis le niveau lorsque I′ = 2I de façon algébrique (sans calcul numérique).

3 Le document 1 donne la condition d’obtention de l’effet Larsen. Le document 2 donne les formules à utiliser, le document 3 la décroissance du niveau sonore en fonction de la distance et le document 4 ne sert que pour une piste de remédiation.

Les étapes de résolution

  • Calculer le niveau sonore de l’orateur.
  • Calculer la distance minimale microphone-haut parleur obligatoire si on ne veut pas d’effet Larsen.
  • Calculer les diagonales de la pièce pour les comparer à la distance « effet Larsen ».
  • Attention à la diagonale en 3D !

Pour les pistes à proposer : Reprendre tous les paramètres (distance microphone-haut parleur ; distance orateur-microphone ; puissance sonore de l’orateur ; niveau sonore du haut-parleur ; dimensions de la pièce) et voir s’ils peuvent être modifiés.

Corrigé

1 Déterminer la nature d’un signal


 

Légende : nature du signal

(1) : onde sonore

(2) : onde sonore

(3) : signal électrique

(4) : onde sonore

(5) : onde sonore

2 Calculer le niveau sonore

On a la relation suivante entre le niveau sonore et l’intensité :

et celle donnant l’intensité en fonction de la distance d : .

Si la distance à la source sonore double alors

d′ = 2d donc l’intensité deviendra :

.

 

Attention

Le logarithme a ses propres règles : log(A ¥ B) = log(A) + log(B).

Et alors le niveau sonore sera :

.

On alors L′ =L – 6 (en dB).

Lorsque la distance double le niveau diminue de six décibels.

Le document 3 nous confirme cette diminution puisque le passage de 1 m à 2 m fait passer le niveau sonore de 92 dB à 86 dB. Tout comme de 5 m à 10 m ou de 15 m à 30 m on a toujours une diminution de 6 dB, quel que soit le niveau sonore choisi.

3 Résolution de problème

D’après le document 1, l’effet Larsen se produit si le niveau du son du haut-parleur capté par le microphone est supérieur à celui de l’orateur. Or ce dernier est donné par :

.

D’après le document 3 et la question 2, on sait que lorsque la distance double le niveau du son diminue de six décibels. De plus le niveau sonore du haut-parleur est de 85 dB à 1 m de distance. L’évolution du niveau sonore émis par le haut parleur et capté par le microphone est donnée dans le document 3 : lorsque le niveau à 1 m est de 85 dB alors il faut aller à 20 m pour qu’il ne soit plus que de 60 dB. Nous pouvons en déduire qu’il faut éloigner le microphone de 20 m du haut-parleur.

Or, d’après les dimensions de la salle, la plus grande distance « au sol » entre le microphone et le haut-parleur est :


(correspond à la diagonale du rectangle qu’est la salle).

Il faut envisager encore le fait que le haut-parleur peut être mis en hauteur « dans le coin » opposé au microphone. On a alors encore le théorème de Pythagore qui nous permet de calculer cette diagonale d’espace :

.

Donc, quel que soit la position du haut-parleur dans cette salle, il se trouve à une distance pour laquelle le niveau sonore de l’onde venant du haut-parleur captée par le microphone est supérieur au niveau de l’orateur donc il y aura un effet Larsen.

Remarque : On maximise ici les distances dans un cas peu réaliste. Il serait curieux de placer le microphone par terre dans un coin ! Mais on peut, de cette façon, voir l’impossibilité d’obtenir une distance satisfaisante (supérieure à 20 m).

Autre méthode

D’après la question 2, 6 dB sont perdus lorsque la distance du haut-parleur au microphone est double donc :


 

Il faudrait multiplier la distance par 16 pour diminuer le niveau à 61 dB, ce qui est encore supérieur au niveau de l’orateur.

Pour limiter cet effet, nous pouvons penser à deux pistes de réflexion.

  • Faire la conférence dans une salle bien plus grande (20 m est envisageable pour une pièce fermée) ou encore en plein air et disposer le haut-parleur à plus de 20 m du microphone.
  • Utiliser un microphone directionnel. Comme le montre le document 4, les microphones ne captent pas de façon identique tous les sons qui leur parviennent. Cela dépend de la direction de l’onde incidente.

Le microphone no 2 du document 4 capte ainsi beaucoup moins bien les sons venant de l’arrière que ceux venant de l’avant par rapport à son axe. Il capte notamment très faiblement les sont qui arrivent avec un angle de 120°. Si le haut-parleur est placé à 120° de l’axe du microphone alors l’onde sonore venant de ce haut-parleur sera très mal captée par le microphone et donc pourra ne pas être supérieure à celle de l’orateur, évitant ainsi l’effet Larsen désagréable.

Autres pistes envisageables

  • Diminuer l’amplification entre le microphone et le haut-parleur et donc le niveau sonore de l’onde provenant du haut-parleur.
  • Diminuer la distance orateur-microphone. Cela impliquerait que l’onde de l’orateur ait un niveau supérieur à 60 dB et donc permet de diminuer la distance (microphone-haut parleur).