Fonction et primitives

Merci !

Annales corrigées
Classe(s) : Tle ES - Tle L | Thème(s) : L'épreuve orale
Type : Sujet d'oral | Année : 2012 | Académie : Inédit
Unit 1 - | Corpus Sujets - 1 Sujet
 
Fonction et primitives

Fonctions numériques

Corrigé

50

Sujets d’oral

matT_1200_00_72C

Sujet d’oral n° 4

Fonctions numériques

Soit la fonction définie pour tout x ∈ ]0 ; + ∞[ par .

>1. Étudier le signe de f.

>2. Donner les variations d’une primitive F de sur ]0 ; + ∞[.

>3. On admet que la courbe représentative de la fonction F est donnée ci-dessous :


Calculer (en unités d’aire) l’aire A du domaine délimité par l’axe des abscisses, la courbe représentative de et la droite d’équation .

>4. Déterminer une équation de la tangente T à la courbe représentative de la fonction F au point d’abscisse 1 et montrer que cette droite T passe par l’origine du repère.

Corrigé
Pistes pour l’oral

Présentation

>1.   ; si ; si .

>2. ; F est strictement croissante sur ]0 ; e], strictement décroissante sur .

>3..

>4.T a pour équation .

Entretien

Voici d’autres questions que l’examinateur pourrait vous poser lors de l’entretien.

>Quelle est la dérivée de la fonction  ?

>Quel est le sens de variation de la fonction  ?

>La courbe représentative de la fonction F admet-elle des tangentes parallèles à l’axe des abscisses ? Si oui, en quel(s) point(s) ?

>La fonction possède-t-elle d’autre(s) primitive(s) que la fonction F représentée ?

>La fonction possède-t-elle une primitive Φ telle que  ?

>À quelle(s) condition(s) une droite passe-t-elle par l’origine du repère ?