A la recherche d'un triangle rectangle

Merci !

Annales corrigées
Classe(s) : Tle S | Thème(s) : Nombres complexes et applications
Type : Exercice | Année : 2017 | Académie : Pondichéry


Pondichéry • Avril 2017

Exercice 2 • 3 points • 30 min

À la recherche d’un triangle rectangle

Les thèmes clés

Nombres complexes

 

On munit le plan complexe d’un repère orthonormé direct (O;u,v).

1. On considère l’équation (E) : z2 − 6z + = 0 où c est un réel strictement supérieur à 9.

a) Justifier que (E) admet deux solutions complexes non réelles.

b) Justifier que les solutions de (E) sont zA=3+ic9 et zB=3ic9

2. On note A et B les points d’affixes respectives zA et zB.

Justifier que le triangle OAB est isocèle en O.

3. Démontrer qu’il existe une valeur du réel c pour laquelle le triangle OAB est rectangle et déterminer cette valeur.

Les clés du sujet

2. Identifiez la symétrie qui relie les images de deux nombres complexes conjugués et concluez.