Mathématiques et électroménager

Merci !

Annales corrigées
Classe(s) : Tle Générale | Thème(s) : Succession d’épreuves indépendantes, schéma de Bernoulli
Type : Exercice | Année : 2020 | Académie : Inédit


Succession d’épreuves indépendantes

Mathématiques et électroménager

30 min

4 points

Intérêt du sujet  Très souvent, le vendeur propose une extension de garantie payante à l’achat d’un appareil électroménager. Utilisons la loi binomiale et le calcul de l’espérance pour déterminer l’intérêt d’une telle pratique.

Un lave-vaisselle est garanti gratuitement pendant les deux premières années. L’entreprise El’Ectro propose à ses clients une extension de garantie de 3 ans supplémentaires. Des études statistiques menées sur les clients qui prennent l’extension de garantie montrent que 11,5 % d’entre eux font jouer l’extension de garantie.

 1. On choisit au hasard 12 clients parmi ceux ayant pris l’extension de garantie (on peut assimiler ce choix à un tirage au hasard avec remise vu le grand nombre de clients).

a) Quelle est la probabilité qu’exactement 3 de ces clients fassent jouer cette extension de garantie ? Détailler la démarche en précisant la loi de probabilité utilisée. Arrondir à 10−3.

b) Quelle est la probabilité qu’au moins 6 de ces clients fassent jouer cette extension de garantie ? Arrondir à 10−3.

 2. L’offre d’extension de garantie est la suivante : pour 65 euros supplémentaires, El’Ectro remboursera au client la valeur initiale du lave-vaisselle, soit 399 euros, si une panne irréparable survient entre le début de la troisième année et la fin de la cinquième année. Le client ne peut pas faire jouer cette extension de garantie si la panne est réparable.

On choisit au hasard un client parmi les clients ayant souscrit l’extension de garantie, et on note Y la variable aléatoire qui représente le gain algébrique en euros réalisé sur ce client par l’entreprise El’Ectro, grâce à l’extension de garantie.

a) Justifier que Y prend les valeurs 65 et − 334 puis donner la loi de probabilité de Y.

b) Cette offre d’extension de garantie est-elle financièrement avantageuse pour l’entreprise ? Justifier.

Les clés du sujet

 1. a) Pensez à bien définir la variable aléatoire utilisée et à bien rédiger les justifications permettant d’identifier la loi suivie par cette variable aléatoire.

 2. b) Pensez à exploiter l’espérance de la variable aléatoire Y qui est l’espérance de gain de l’entreprise.