Fiche de révision

Algorithme programmation et suites

A Notion de liste en informatique

DÉFINITION

Une liste en informatique est une collection ordonnée d'éléments (entiers, flottants, chaînes de caractères, booléens…) séparés par des virgules et mis entre crochets.

EXEMPLE

L = [2, 3, 5, 8, 13] est une liste de 5 entiers, distincte de la liste [3, 2, 5, 8, 13].

notes = ['1e3', 12, 9.5, 18] est une liste de 4 éléments :

une chaîne de caractère (1e3), deux entiers (12 et 18) et un flottant (9.5).

Remarques

Une liste d'entiers ou de flottants peut représenter une suite numérique comme la liste L.

On peut visualiser une liste comme une série de « boîtes » dans lesquelles chaque élément de la liste est rangé. Les boîtes sont numérotées par un indice.

Attention : la numérotation commence à 0.

notes = ['1e3', 12, 9.5, 18]

15400_C01_15

EXEMPLE

L'élément d'indice 0 de L, noté L[0], a pour valeur 2 ; L[1] a pour valeur 3 ; L[4] a pour valeur 13.

notes[0] a pour valeur '1e3', notes[1] a pour valeur 12, notes[3] a pour valeur 18.

Générer une liste

Voyons d'abord le cas particulier de la fonction range. L'instruction range(6) permet de générer la liste [0, 1, 2, 3, 4, 5] (faire list(range(6)) pour afficher la liste) et range(1, 6) permet de générer la liste [1, 2, 3, 4, 5].

Attention : range(n) correspond à la liste des entiers de 0 à n 1 et range(n, m) à celle des entiers de n à m 1.

Une liste peut être générée « en extension », c'est-à-dire en écrivant l'ensemble de ses éléments.

EXEMPLE

jours = ['lundi', 'mardi', 'mercredi', 'jeudi', 'vendredi']

On peut également générer une liste par ajouts successifs d'un élément. L'instruction L.append(x) ajoute x à la fin de la liste L (append signifie « ajouter » en anglais).

EXEMPLES

L'instruction jours.append('samedi') crée la liste :

['lundi', 'mardi', 'mercredi', 'jeudi', 'vendredi', 'samedi'].

Le programme suivant crée la liste [2, 4, 6, 8, 10].

Image dont le contenu est L = []for k in range(1, 6): L.append(2 * k); Fin de l'image

On peut aussi générer une liste « en compréhension », notamment par une formule définissant ses éléments.

EXEMPLES

L'instruction L = [2 * n for n in range(1,6)] crée la liste [2, 4, 6, 8, 10].

On peut ajouter une condition dans laquelle != signifie ≠.

L'instruction L = [2 * n for n in range(1,6) if n !=3] crée la liste [2, 4, 8, 10].

Manipuler des éléments d'une liste et leur indice

Le tableau suivant résume les principales manipulations sur les éléments d'une liste.

On considère la liste L = [2, 4, 6, 8, 10].

Tableau de 6 lignes, 3 colonnes ;Corps du tableau de 6 lignes ;Ligne 1 : Objectif; Instruction; Résultat; Ligne 2 : Obtenir le 3e élément de la liste, d'indice 2.; L[2]; 6; Ligne 3 : Donner le nombre d'éléments de la liste.; len(L); 5; Ligne 4 : Rechercher l'indice d'un élément de la liste.; L.index(8); 3; Ligne 5 : Ajouter le nombre 12 à la liste.; L.append(12); [2, 4, 6, 8, 10, 12]; Ligne 6 : Supprimer l'élément d'indice 2.; del L[2]; [2, 4, 8, 10, 12];

Parcourir les éléments d'une liste

Pour parcourir un à un les éléments x d'une liste L, on utilise for x in L:.

EXEMPLE

Le programme suivant calcule la somme des nombres de la liste pairs.

Image dont le contenu est pairs = [2, 4, 6, 8, 10]somme = 0for i in pairs: somme = somme + i; Fin de l'image

La valeur de la variable somme en fin d'exécution est 30.

B Suites et situations algorithmiques

Calculer un terme de rang donné d'une suite définie par récurrence

On considère la suite (un) définie par u0 = 1 et, pour tout entier naturel n,
un+1 = 2un + 3. On souhaite calculer u20.

Avec un tableur

Comme ci-contre, on entre en B2 la valeur de u0 et en B3 la formule =2*B2+3 correspondant à la relation de récurrence.

On recopie la cellule B3 vers le bas jusqu'en B22.

15400_C01_16

La cellule B22 affiche la valeur de u20 = 4 194 301.

Avec Python

Tableau de 2 lignes, 2 colonnes ;Corps du tableau de 2 lignes ;Ligne 1 : Langage naturel; Python; Ligne 2 : u ← 1Pour k de 1 à 20u ← 2u + 3Fin Pour; u = 1for k in range(1, 21): u = 2 * u + 3;

En fin d'algorithme, la variable u contient la valeur de u20. Le programme Python fournit la valeur 4 194 301.

Attention, en Python range(1, 21) correspond à la liste des entiers consécutifs de 1 à 20. Pour que la boucle for s'exécute 20 fois, il faut donc indiquer range(1, 21).

Déterminer et représenter une liste de termes

Cas d'une suite définie par son terme général

EXEMPLE

On considère la suite (un) définie, pour tout entier naturel n, par un = n2. On souhaite

calculer et représenter avec Python les termes de u0 à u10.

On exécute le programme suivant qui utilise le module pyplot de représentation

graphique.

Image dont le contenu est import matplotlib.pyplot as pltL = [n**2 for n in range(11)]plt.scatter(range(11), L)plt.show(); Fin de l'image

Ce programme est présenté ici pour introduire de façon progressive l'utilisation

du langage Python dans l'étude des suites.

Le programme commence par dresser la liste de toutes les ordonnées des points à tracer.

La liste L est : [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100].

Les points sont ensuite représentés. L'instruction plt.scatter(range(11), L)

représente le « nuage de points » dont les abscisses sont données par la liste range(11)

et les ordonnées par la liste L. Le mot « scatter » signifie dispersion en anglais.

C'est ce programme que nous utiliserons désormais pour faciliter l'appropriation de

la notion de liste en informatique.

Voir la figure 1 page suivante.

Cas d'une suite définie par récurrence

EXEMPLE

On considère la suite (un) définie par u0=34 et, pour tout entier naturel n, un+1 = un2.

On souhaite calculer et représenter avec Python les termes de u0 à u5.

On exécute le programme suivant.

Image dont le contenu est Programmeimport matplotlib.pyplot as pltu = 3/4L = [u]for k in range(1, 6): u = u ** 2 L.append(u)plt.scatter(range(6), L)plt.show(); Fin de l'image

La liste L est : [0.75, 0.5625, 0.31640625, 0.1001129150390625,

0.010022595757618546, 0.00010045242572063329].

Remarque

On rappelle que l'instruction 'L.append(u)' ajoute u à la fin de la liste L.

Voir la figure 2 page suivante.

15400_C01_17  15400_C01_19

 Figure 1 Figure 2

Algorithme de seuil

EXEMPLE

On considère la suite (un) définie pour tout entier naturel n par un = 0,9n.

On admet que (un) est décroissante et on recherche le plus petit entier n pour lequel un ≤ 0,5.

On ne sait pas combien d'itérations seront nécessaires, on utilise donc
une boucle while avec un compteur qui s'incrémente tant que un est supérieur à 0,5.

Tableau de 2 lignes, 2 colonnes ;Corps du tableau de 2 lignes ;Ligne 1 : Langage naturel; Python; Ligne 2 : n ← 0Tant que 0,9n > 0,5n ← n + 1Fin Tant que; n = 0while 0.9 ** n > 0.5: n = n + 1;

La valeur de la variable n en fin de programme est 7. On en déduit que 0,97
est la plus petite puissance de 0,9 inférieure ou égale à 0,5.

Pour lire la suite

Je m'abonne

Et j'accède à l'ensemble
des contenus du site