Appliquer la réciproque du théorème de Thalès

Merci !

Fiches
Classe(s) : 3e | Thème(s) : Utiliser la géométrie plane pour démontrer


Rappels de cours

Réciproque du théorème de Thalès

Soient :

deux droites 𝒟 et 𝒟 sécantes en A ;

B et M deux points de 𝒟 distincts de A ;

C et N deux points de 𝒟 distincts de A.

Si les points A, B et M d’une part, et les points A, C et N d’autre part sont alignés dans le même ordre et si AMAB=ANAC, alors les droites (BC) et (MN) sont parallèles.

96239_fiche_19_doc_01

Méthodes

Démontrer que deux droites sont parallèles

Les longueurs sont mesurées en centimètres.

Construire un triangle ABC tel que AB=3, BC=7 et AC=9.

Placer le point E de la demi-droite [AB) tel que AE=5, puis le point F de la demi-droite [AC) tel que AF=15.

Les droites (BC) et (EF) sont-elles parallèles ? Justifier votre réponse.

conseils

N’oubliez pas de justifier l’application de la réciproque du théorème de Thalès.

 

Solution

98891_fiche_23_doc_01

Nous avons ABAE=35=0,6

et ACAF=915=0,6. Nous en déduisons que ABAE=ACAF.

Les points A, C, F sont alignés dans le même ordre que les points A, B, E et de plus ABAE=ACAF. Donc, d’après la réciproque du théorème de Thalès, les droites (BC) et (EF) sont parallèles.

Démontrer que deux droites ne sont pas parallèles

98891_fiche_23_doc_02

L’unité de longueur est le centimètre.

On considère deux droites 𝒟1 et 𝒟2 sécantes en O. Les points A et H sont situés sur 𝒟1 tandis que les points B et G sont situés sur 𝒟2.

On donne : OA=6 ; OB=8 ; OG=6,6 et OH=5.

Les droites (AB) et (GH) sont-elles parallèles ?

conseils

Vérifiez si l’on peut utiliser la réciproque du théorème de Thalès, ou pas.

 

Solution

Calculons : OAOH=65 et OBOG=86,6.

Nous remarquons que 6586,6, donc nous en déduisons que OAOHOBOG.

Les points G, O, B sont alignés dans le même ordre que les points H, O, A.

Si les droites (AB) et (GH) étaient parallèles, le théorème de Thalès permettrait d’écrire : OAOH=OBOG. Mais puisque OAOHOBOG, les droites (AB) et (GH) ne sont pas parallèles.