On connaît la forme des solutions des équations différentielles y ′ = ay + b où a et b sont des constantes, ce qui n'est pas le cas pour la plupart des autres équations.
I Équation différentielle y ′ = ay, a réel
Les solutions sur ℝ de l'équation différentielle sont les fonctions de la forme :
x ↦ Ceax, où C est une constante réelle
II Équation différentielle y ′ = ay + b, a réel non nul, b réel
Les solutions sur ℝ de l'équation différentielle sont les fonctions de la forme :
où C est une constante réelle
À noter
Lorsque b = 0, on retrouve le cas précédent.
III Équation logistique
Une équation logistique est une équation différentielle de la forme , où k et m sont des réels strictement positifs.
Elle se résout par un changement de la fonction variable, qui permet de se ramener à une équation différentielle de la forme .
Le modèle logistique, dû à Pierre François Verhulst, permet de modéliser l'évolution de certaines populations.
À noter
Dans les exercices, le changement de la fonction variable est systématiquement donné, il n'est pas à trouver.
Méthode
Résoudre une équation différentielle de la forme y ′ = ay + b
On considère l'équation différentielle
conseils
solution
⇔ C - C 2 = 0 ⇔ C (C - 1) = 0 ⇔ C = 0 ou C = 1
On a donc deux solutions et .
À noter
e- 1 ≠ 0 on peut donc bien simplifier par e−1. En revanche, on ne sait rien de C. Il ne faut donc surtout pas « simplifier » par C dans d'égalité C = C² (on remarque d'ailleurs que C = 0 donne une solution).
pas de solution vérifiant la condition