Fonctions logarithme décimal

Merci !

Fiches
Classe(s) : Tle ST2S - Tle STI2D - Tle STL - Tle STMG | Thème(s) : Fonctions exponentielles, logarithme décimal, inverse

A Définition

DÉFINITION

Le logarithme décimal d’un nombre réel strictement positif a est le nombre réel b tel que 10b = a.

EXEMPLES

100 = 1, donc log 1 = 0 ; 101 = 10, donc log 10 = 1.

À retenir

Soit a un nombre réel strictement positif. b = log a si et seulement si a = 10b.

Fonction logarithme décimal

Associons à tout nombre réel strictement positif x le nombre réel log (x) :

on définit la fonction logarithme décimal notée log : xlogx définie sur l’intervalle 0,+ et à valeurs dans ℝ.

Obtenir une valeur approchée de log a

La touche Image dont le contenu est log; Fin de l'image de la calculatrice ou la fonction log 10() d’un tableur permet d’obtenir les valeurs numériques de log a avec une précision suffisante pour les situations étudiées en Terminale STMG.

EXEMPLES

Retrouver avec votre calculatrice les valeurs approchées suivantes :

log 2 ≈ 0,30103 ; log (0,5) ≈ – 0,30103 ; log 3 ≈ 0,47712 ; log 6 ≈ 0,77815.

B Sens de variation et courbe représentative

On admet que la fonction logarithme décimal, notée log, est strictement croissante sur son intervalle de définition 0,+.

La courbe représentative de la fonction x ↦ log x peut être obtenue facilement avec une calculatrice graphique ou un tableur.

Le résultat suivant s’interprète immédiatement sur la figure :

Pour tous nombres réels strictement positifs a et b, a ≤ b si et seulement si :

log a ≤ log b.

Conséquence

Pour tout nombre réel strictement positif a :

• si 0 ≤ a ≤ 1, alors log a ≤ 0 ;

• si a > 1, alors log a > 0.

Maths_C06_03

C Propriétés algébriques

Pour tous nombres réels strictement positifs a et b, pour tout entier naturel n et pour tout réel x :

loga×b=loga+logb ; log1a=loga ; logab=logalogb ; logan=nloga ; logax=xloga.